Do Proteins in Dinosaur Blood Vessels Map Evolutionary History?

Remember back in 2005 when we first heard that evolutionary paleontologist Dr. Mary Schweitzer had discovered red blood cells and pliable blood vessels inside a T. rex's leg bone? Bible-believing creationists rightly proclaimed the preservation of dinosaur soft tissue as evidence that dinosaurs were preserved in the fossil record much more recently than evolutionists claimed. Evolutionists were generally skeptical that this material could really be soft tissue belonging to a bona fide dinosaur because they — like creationists — could not believe that soft tissues could survive for millions of years. Other scientists have now discovered soft tissue within additional upper Cretaceous fossils. Some evolutionists have come to accept the notion that soft tissue, such as collagen in a camel dated at 3.5 million years, could be preserved for at least a few million years. However, many remain skeptical that soft tissue — especially intact protein molecules — could survive in these dinosaur bones dated at 65–80 million years. They tend to attribute components of apparently ancient soft tissue to contamination, if not of the samples, then of the equipment used to analyze the material. University of York’s Matthew Collins, for instance, declared that the T. rex proteins Schweitzer sequenced were too complete to be ancient, saying, "Old proteins get damaged and destroyed, and there is no evidence of any damage in those peptides — they looked fresh and that would be surprising given their age." Meanwhile Schweitzer and colleagues have continued their work verifying that soft tissue samples really belonged to the dinosaurs in which they were found, identifying more protein components,2 and even discovering one mechanism by which blood cells and vessels might be preserved.

[You can finish reading the rest of this article at Answers in Genesis. Click here.]