Massive Modern Reefs: Finding Time to Grow

The term reef conjures up images of an underwater wonderland —a beautiful and colorful spectacle of living animals such as corals, sponges, fish, and other exotic sea creatures, where snorkelers and divers love to congregate. Unseen beneath the corals is a massive limestone framework, built up slowly, inch by inch, as organisms die and leave behind their hard skeletons. How was it possible for these coral reefs — sometimes thousands of feet thick — to grow in the short time since Noah’s Flood about 4,400 years ago? The most famous of all living reefs is Australia's Great Barrier Reef, actually a series of 3,000 smaller reefs that stretch some 1,600 miles (2,600 km) along the continent's northeastern coast. At its thickest, the reef is over 400 feet (120 m) thick. But this is nothing compared to one of the world’s thickest "reefs" — the Eniwetok (Enewetak) Atoll, located in the Pacific's Marshall Islands. Drilling operations in the 1950s revealed nearly a mile (4,050 feet, or 1,230 m) of limestone material resting on an underwater volcano.1 Has there been enough time for such thick accumulations to form since the Flood?

Reef Growth Rates

Skeptics often make the mistake of assuming that the slow processes we see today have always operated at the same rate. They point to modern corals, which usually require well-lit, warm shallow water in which to grow. If the corals were in deeper water, their limestone skeletons would dissolve in the colder environment. The corals' growth would also be inhibited in deeper water because they usually partner with various photosynthetic organisms, such as algae, that can grow best near the surface where sunlight is abundant.

[You can finish reading the rest of this article at Answers in Genesis. Click here.]